BELENERGIA IOOO PROJECT

Summary of the Project Status based on the agreements negotiated up to 2013

December 2013

Synthetic Decription of the Project

Cogeneration plant of 400 MWe in Brest, fueled by gas (Project developed by Belenergia IOOO with the Maeg Costruzioni SpA/ Ansaldo Energia SpA consortium) and the Electric interconnector between Belarus and Poland

- Project's structure :
- CHP Power Station:
 - 1) Electric Capacity delivered to Belarus Grid: 280 MW

2) Electricity Capacity for Tranfer between Belarus and Poland: 120 MW

- Primary network for heat distribution to the city of Brest.
 - 1) Design Capacity 150 MWt
 - 2) Winter Peak Capacity expected 270 MWt
- International Electrical corridor between Belarus and Poland specified as follows:
- electric line AT 330-kV between the substation of the Belarus grid Brest 1 and a new substation at the boundary AT 330/400/110kV (BY)
- back to back plant of about 135 MW (A second section will be built in the future up to 540 MW)
- 3. revamping and repowering of the 110 kV line to Wolka-Dobrynska (PL)

PERMITS

- August 2008, BELENERGIA IOOO company Establishment (Annex 1)
- Decree of the President of the Republich of Belarus, 11.11.2008 (Annex 2)
- Land assignment for the CHP Power Station (Annex 3)
- Investment Agreement with the Brest region Executive committee, 22.12.2010 (Annex 4)
- Modified Design Project, 2011 (Annex 5 Ansaldo project)
- Additional agreement to the Investment Agreement, 22.12.2011 (Annex 6)
- Land assignment for the electric and thermal lines construction, 2012 (Annex 7)
- EPC Contract between Belenergia MAEG, 2012 (Annex 8)
- Environmental Impact Assessment by Belnipienergoprom, 2012 (Annex 9)
- Construction and erection works permit to MAEG for CHP Power Station construction opening, May 2012 (Annex 10)
- Agreement with Beltransgas for gas transport and supply, 2013 (Annex 11)
- Technical negotiations with Brestenergo on electric and thermal energy selling , 2013 (Minutes of the meeting, march 2013, Annex 12)
- 2013 Meeting with Belenergo in Minsk for the Investment agreement modification and the formal Letter to the Brest Region Governor with proposal for the modification of Power plant operation terms (Annex 13)
- Business plan (Annex 14)
- Interconnector Project (Annex 15)

Interconnector: transborder connection scheme

Heat Delivery and Distribution System Scheme

Dis. 4.1. Schema principale di distribuzione termica dalla centrale TEZ-PGU e del funzionamento collettivo con VRK-1

Рисунок 4.1 Принципиальная схема выдачи теплоэнергии от ТЭЦ-ПГУ и совместной работы с ВРК-1

CHP Power Station

June 2013

Brest TEZ-PGU Power Station Layout

To discrtit

heating grid PK2

	-			
		POWER SYST	ЕМ	LEGEND
	No. Item	DESCRIPTION	No. Item	DESCRIPTION
	1	STEAM TURBINE BUILDING	16	DEMI WATER TANK
A IN / OUT DISTRICT HEATING WATER	2	GAS TURBINE BUILDING	17	RAIN WATER BASIN
B OUT AUXILIARY BOILER	3	S.T. & G.T. ELECTRICAL BUILDING	18	WATER TREATEMENT
0	4	STEP UP AND UNIT TRANSFORMERS	19	NEUTRALIZATION BASIN
C HV GIS BUSHING	5	HEAT RECOVERY STEAM GENERATOR	20	OILY WATER TREATEMENT
D NATURAL GAS SUPPLY	6	FEED WATER PUMP	21	HRSG ELECTRICAL BUILDING
	7	STACK	22	EMERGENCY DIESEL
COOLING TOWERS BLOW DOWN WATER	8	CIRCULATION WATER PUMPS	23	CHEMICAL INJECTION
F INDUSTRIAL WATER SUPPLY	9	COOLING TOWERS	24	ELECTRICAL CONNECTIONS 220 KV
G SANITARY WATER SUPPLY	10	CIRCULATION WATER PUMP ELECTRICAL BUILDING	25	PARKING
0	11	GAS COMPRESSORS BUILDING STATION	26	CONTROL ROOM
(H) WASTE WATER DISCHARGE	12	DISTRICT HEATING HEATERS	27	COMMON SERVICE ELECTRICAL BUILDING
10 25 50 m	13	DEMI WATER PRODUCTION BUILDING	28	AIR COMPRESSOR BUILDING
	14	FIRE FIGHTING PUMPS BUILDING	30	GAS METERING & FILTRATION

	COGENERATING	SYST	EM LEGEND
No. Item	DESCRIPTION	No. Item	DESCRIPTION
32	BACK UP 25mX45m	40	WORKSHOP
33	HEAT EXCHANGERS	41	WAREHOUSE
34	EXPANSION TANK	42	COMPRESSED AIR
35	DISTRICT HEATING PUMPING STATION	43	WATER SOFTENER
36	BOOSTER PUMPS	44	LOCKER ROOM-LAVATORIES
37	ELECTRICAL BUILDING	45	OFFICES - Canteen - Changing room
38	CONTROL ROOM	46	POWER UNIT CONTAINER
39	WATER TANK	47	RECIRCULATING PUMPING STATION
		48	WATER TANK LTR

Environment Temperature (2009-2010)

	Tem	peratura	Tem	peratura	Torn	poratura	Temperatura dell'acqua nella rete					
	dell'	aria, "C	SU	olo,"C	Dell'acqu	a, iniziale, *C	(andata),*C (rientro),*C		(andata), "C (rientro			
	2010r.	2009r.	2010r.	2009r.	2010r.	2009r.	201	Or.	20091.			
gennaio	-9,1	-3	4,2	3,7	6.2	5,8	82,2	50.3	70,3	45.4		
febbraio	-2,8	-1	2.6	3,1	7,3	6	70,5	45,3	67.9	44,3		
marze	3.2	1,9	3,6	3,3	9,0	7	63,5	43.0	62,7	42.1		
I trimestre	-2,9	-0.7	3.8	3,4	7,5	6,3	72,1	48,2	87.0	43,9		
aprie	9,5	10.8	7.5	7,1	12,1	11,6	60,3	43.9	58.8	43,4		
мардіо	15,1	13,7	11.1	10.5	16,1	15,4	59,4	44,2	59,7	44,7		
giugno	18,6	16,5	14.6	13,6	18.7	18,9	60,6	46,2	59,2	44,1		
Il trimestre	14.4	13,7	11,1	10,4	15,6	15.3	60,1	44.8	59,2	44,1		
semestre	5,8	6,5	7,4	6,9	11,6	10.8	68,1	45,5	63,1	44,0		
lugio	22.4	20	16,9	16,9	22,4	20	59,7	45,6	68,3	45,3		
agosto	20.6	18,2	18,1	17	21,9	19,6	59,2	44,5	58,1	44,9		
settembre	12,4	15	15,1	15,8	16,8	18,1	59,8	43,2	58.1	44,7		
III trimestre	18,5	17,7	16.7	16,6	20,4	19,2	59,6	44,4	58,2	45,0		
9 mesi.	10,0	10,2	10,5	10,1	14,5	13.6	63,9	45,1	61,5	44,3		
ottobre		6,8		12,2		13.2			59,2	42,7		
novembre		4,9		8,7		9,9	-		69,4	41,5		
dicembre		-2		8,4		7			69	44,6		
V trimestre	0.0	3,2	0,0	9,1	0.0	10.0	0,0	0,0	62,5	43,0		
anno	7,5	8,5	7,9	9,9	10,9	12,7	47,9	33,9	61,7	44,0		

Thermal Supply to Heat District Vs Environment Temperature

Temperatura Ambiente [°C]	DH [MWt]	Temperatura DH in [°C]	Temperatura DH out [°C]	portata [kg/s]
-21.0	300	60.0	105.0	1589.4
-11.3	265	70.0	105.0	1805.1
-3.0	208	45.4	70.3	1994.5
-2.0	196	44.8	69.0	1927.6
-1.0	193	44.3	67.9	1953.3
0.6	180	42.0	64.0	1948.0
1.9	168	42.1	62.7	1942.3
4.9	145	41.5	59.4	1931.4
6.8	111	42.7	59.2	1608.2
7.8	100	42.6	59.1	1444.9
10.8	52	43.4	58.8	809.9
13.7	37	44.7	59.7	580.2
15.0	44	44.7	58.1	781.1
16.5	24	44.1	59.2	381.8
18.2	38	44.9	58.1	678.3
20.0	24	45.3	58.3	434.0
32.0	24	45.3	58.3	434.0

Thermal Capacity Demand of Brest District Heating (2009)

Energia termica immessa 2009 (su media mensile) [MWt]	Imp. Cogenerativo	BREST 1	BREST 2	Centrale SUD	Centrale AEN
gennaio	57373	74989	37880	42112	154981
febbraio	47871	62400	31886	35652	129938
marzo	45605	59565	30865	34435	124865
aprile	27777	11414	12299	13953	37666
maggio	14544	13715	6082	7362	27159
giugno	22635	12353	5058	0	17411
luglio	17750	10232	6281	1092	17605
agosto	5696	16112	6586	5245	27943
settembre	7847	20006	5217	6388	31611
ottobre	23981	39827	20377	22603	82807
novembre	39279	47453	26984	29972	104409
dicembre	58079	67133	36919	41520	145572
Totale	368438	435199	226435	240334	901967

BREST BIELORUSSIA

Energia termica giomaliera (su media mensile 2009) [MWh/giomo]	Imp. Cogenerativo	BREST 1	BREST 2	Centrale SUD	Centrale AEN
gennaio	1851	2419	1222	1358	4999
febbraio	1710	2229	1139	1273	4641
marzo	1471	1921	996	1111	4028
aprile	926	380	410	465	1256
maggio	469	442	196	237	876
giugno	755	412	169	0	580
luglio	573	330	203	35	568
agosto	184	520	212	169	901
settembre	262	667	174	213	1054
ottobre	774	1285	657	729	2671
novembre	1309	1582	899	999	3480
dicembre	1874	2166	1191	1339	4696

Thermal Plant Balance (DH 160 MW)

Thermal Plant Balance (DH 270 MW)

— •*·* · ·*·* — • · ·

Thermal Plant Balance (DH 27 MW)

Power station: Operation conditions

Operation condition	Full	winterneck	Summer	winter	voarly avorago	
Operation condition	Condensing	winter peak	average	average	yearry average	
Thermal Capacity						
delivered (MWt)	0	270	27	160	98	
Specific consumption						
(kJ/kWh)	6.349	7.295	6.316	6.768	6.556	
Gas specific						
consumption (mc/kWh)	0,200	0,229	0,199	0,213	0,206	
Electric Capacity (Mwe)	426,2	371,0	417,7	399,9	408,2	
Average Duration (h)	0	n.a.	3.657	4.142	7.800	
Electricity Production						
MWh			1.527.713	1.656.518	3.184.231	
Heat Production MWht			<i>98.7</i> 51	662.773	761.524	
Electricity delivered to						
Belarus market MWh			1.035.055	1.172.280	2.207.335	
Electricity delivered to						
Polish market MWh			492.657	484.239	976.896	
Gas consumption						
(mc/year)					656.477.279	

District heating cogeneration plant: design inputs

Thermal Power Inputs:

- Winter average capacity: 150 MWt
- Summer average capacity: 27 MWt
- Heat delivered to heat district by Power Station: 752.271 MWht/year

Electric Data:

- Power Station Electric Efficiency
- Average Winter: 53,2% (gas specific consumption 0,213 mc/kWh)
- Average Summer: 57,0% (gas specific consumption 0,199 mc/kWh)
- Average Year: 55,0% (gas specific consumption 0,206 mc/kWh)

Power Capacity

- □ Winter Capacity : 400 MW (electricity production: 1.656.378 MWhe)
- Summar Capacity : 417,7 MW (electricity production: 1.527.582 MWhe)
- Yearly Medium Capacity: 408,2 MW (electricity production: 3.183.960 MWhe)

BELENERGIA PROJECT :

"International Electric Interconnector Belarus-Poland station

Project's structure:

CHP Power Station with high tension electric substation (330kV)

International Electrical corridor between Belarus and Poland consists of:

1) electric line AT 330-kV between the substation of the Belarus grid Brest 1 and one new substation at the boundary AT 330/400/110kV (BY)

2) back to back plant of about 135 MW (a second section will be built in future till 500 MW)

3) revamping and repowering 110 kV line to Volka Dobrinska (PL)

4) metering system

Revamping and Implementation of the electric network for distribution to the city of Brest.

- \Box n° 2 330/110 transformers 200 MVA in grid substation
- \Box n° 1 110 bur for feed internal distribution system to the city of Brest
- \Box n° 1 metering system

Interconnector: transborder connection scheme

With this configuration there will be one bidirectional solution 330 kV (high voltage Belarus grid) / 400 kV (high voltage Polish grid) / 110 kV (distribution voltage Polish grid)

The Business Plan (Annex 14) is composed on the basis of the project's technical data and the results of the negotiations, in particular those with the Belarusian authorities, on the electricity and heat selling according to the scheme summarized in the letter addressed to the Brest Region Governor (Annex 13).

Economical Assumptions of Belarus Market : Price and tariff

Gas Border Price	20	2015-	-2017	after 2017		
US\$/€ change 1,31	US\$/Mmc	€/Mmc	US\$/Mmc	€/Mmc	US\$/Mmc	€/Mmc
Gas Border Price (pfg) (year 2012 :Pfg=P12)	163	124,4	Pfg=P12*	<u>(Pai/P12)</u>	Pfg=P12*	(Pai/P12)
Belytransgag transfer share price (qt)	14,5	11,1	14,5	11,1	14,5	11,1
Distribution share price (qd)	10	7,6	10	7,6	10	7,6
Margin (m)	12,5	9,5	12,5	9,5	12,5	9,5
Gas Price (at delivery point) (PG)	200	152,7	PG=Pfg+qt+qd+m			
Electricity Price (*) Pe	US\$/MWh	€/MWh	US\$/MWh	€/MWh	US\$/MWh	€/MWh
Gas share price qg)	42,0	32,1	qg=0,206*PG			
Depreciation and O&M share price (qiom)	42,6	32,5	42,6	32,5	18,3	14,0
Total Electricity price (Pe)	84,6	6 <u>4</u> ,6	Pe=32,5+	0,206*PG	Pe=14+0),206*PG

Investments structure

Г

Items	€
Power Station without offsite	250.000.000
Cogeneration plant and offsite	50.000.000
Connection to gas grid	5.000.000
Water supply plant	10.000.000
Electric links to electric grid	69.000.000
BtoB station	45.000.000
Total EPC	429.000.000
Preliminary engeneering for permit and procurement	15.000.000
Gas commissiong	15.000.000
Contingencies	15.000.000
Total tecnical Investment	474.000.000
Development costs	22.000.000
Financial costs capitalized interest during the construction,financial arrangement costs,advisoring	45.705.406
Total investtment	541.705.406

Business Plan : Economical Results

- □ Equity 30%:€ 162.511.500
- □ Debt 70% : € 379.1933.7500
- Interest rate : IRS 6 years + 500 bps
- Debt repayment: 10 years
- Pay back: 7 years
- □ IRR : 14,7%

- Total Investment:
 € 541.705.406
- □ Turnover : € 194.739.798
 □ EBITDA: € 74.086.000
- Energy tariff (Belarus Market): during fist ten operation years 64,2 € /MWh from 11° operation year 45,7 € /MWh
- Energy Transfert through BtoB tariff: 10 €/MWh